21088

B. Sc. (First Year) Examination, 2021

(New Course)

MATHEMATICS

Paper: First

(Algebra Trignometry)

Time Allowed: Three hours

Maximum Marks: 40

नोट : सभी खण्ड निर्देशानुसार हल कीजिए। Note: Attempt all section as directed.

खण्ड-अ

Section-A

(लघु उत्तरीय प्रश्न)

 $5 \times 3 = 15$

(Short Answer Type Questions)

नोट : सभी पाँच प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न 3 अंकों का है।

Note: Attempt all five questions. Each question carries 3 marks.

1. आव्यूह की जाति एवं रिक्तता (शून्यता) कित की जिए-

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$$

Find the rank and nullity of the matrix:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

अथवा

Or

[1] 21088

आव्यूह
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 का अभिलाक्षणिक बहुपद, अभिलाक्षणिक समीकरण एवं अभिलाक्षणिक मूल ज्ञात कीजिए।

Find the characteristics polynomial, characteristics equation and characteristic roots of the matrix A, where

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

2. निम्नलिखित समीकरण के विकास को पूर्णत: हल कीजिए-

$$x+3y-2z=0$$
, $2x-y+4z=0$, $x-11y+14z=0$

Solve completely the system of equations:

$$x+3y-2z=0$$
, $2x-y+4z=0$, $x-11y+14z=0$

दर्शाओं की आव्यूह
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & \xi & 1 \\ 3 & -1 & 1 \end{bmatrix}$$
 कैली-हैं मिल्टन प्रमेय को सन्तुष्ट करते हैं।

Show that the following matrix satisfy Cayley-Hamilton theorem :
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$

3. वह समीकरण बनाइये जिसके मूल -3, -1 और 5/3 हों।

Form the equation whose roots are -3, -1, 5/3.

अथवा

Or

21088 [2]

वह समीकरण ज्ञात कीजिए जिसके मूल $x^4 + 3x^3 - 6x^2 + 2x - 4 = 0$ के मूलों के व्युत्क्रमों के दोगुने हैं। Find the equation whose roots are twice the reciprocals of the roots of

$$x^4 + 3x^3 - 6x^2 + 2x - 4 = 0$$

4. निम्न फलन के लिए बहुपद जाल की रचना कीजिए-

$$a [c \cdot (x+y) + b \cdot d \cdot e] + r \cdot t (p+q \cdot z)$$

Draw polynomial net for the function:

$$a \left[c \cdot (x+y) + b \cdot d \cdot e \right] + r \cdot t \left(p + q \cdot z \right)$$

अथवा

Or

बूलीय बीजगणित $\left(B,+,\cdot\right)$ में किसी अवयव $a\in B$ के लिए सिद्ध करो कि-

(a)
$$a + a = a$$

(b) $a \cdot a = a$

For every element $a \in B$ in a Boolean algebra $(B, +, \cdot)$ prove that

(a)
$$a+a=a$$

(b) $a \cdot a = a$

5. 1+i को ध्रुवीय रूप में लिखिए।

Express 1+i in the polar form.

अथवा

Or

 $\cos^{10} heta$ को कोज्या श्रेणी में $oldsymbol{\phi}$ के गुणज को विस्तार कीजिए।

Express $\cos^{10}\theta$ in a series of cosines multiples of θ .

खण्ड-ब

Section-B

(दीर्घ उत्तरीय प्रश्न)

5×5=25

(Long Answer Type Questions)

नोट : सभी पाँच प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न 5 अंकों का है।

Note: Attempt all five questions. Each question carries 5 marks.

21088

- 6. यदि λ एक व्युत्क्रमणीय आव्यूह A का अभिलाक्षणिक मान है तो दिखाइये कि $\dfrac{|A|}{\lambda}$ आव्यूह $\operatorname{adj} A$ का अभिलाक्षणिक मान है।
 - If λ is the eigen value of an inversible matrix A, then show that $\frac{|A|}{\lambda}$ is the eigen value of adj A.

अथवा

Or

अव्यह
$$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$
 को प्रसामान्य रूप में बदिलए तथा उसकी जाति तथा शून्यता ज्ञात कीजिए।
$$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$
 to its normal form and hence find its rank and nulity.
$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$

7. कैले हैमिल्टन प्रमेय को लिखिए एक सिद्ध कीजिए।

अथवा

Or

आव्यूह विधि से निम्न समीकरणों का हल ज्ञात कीजिए—

$$x+2y+3z=14$$
, $3x+y+2z=11$, $2x+3y+z=11$

Solve the following equations using matrix methods:

$$x+2y+3z=14$$
, $3x+y+2z=11$, $2x+3y+z=11$

8. यदि त्रिघात समीकरण $x^3 + px^2 + qx + r = 0$ के मूल α, β, γ हों, तो $\frac{\beta^2 + \gamma^2}{\beta + \gamma} + \frac{\gamma^2 + \alpha^2}{\gamma + \alpha} + \frac{\alpha^2 + \beta^2}{\alpha + \beta}$ का मान ज्ञात कीजिए।

> 21088 [4]

If α , β , γ be the roots of the cubic equation $x^3 + px^2 + qx + r = 0$, then find the value of

$$\frac{\beta^2 + \gamma^2}{\beta + \gamma} + \frac{\gamma^2 + \alpha^2}{\gamma + \alpha} + \frac{\alpha^2 + \beta^2}{\alpha + \beta}$$

अथवा

Or

 α,β,γ समीकरण $x^3+px^2+qx+r=0$ के मूल है तो वह समीकरण प्राप्त कीजिए जिसके मूल है—

$$\beta^2 + \beta \gamma + \gamma^2$$
, $\gamma^2 + \gamma \alpha + \alpha^2$, $\alpha^2 + \alpha \beta + \beta^2$

If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the equation whose roots are

$$\beta^2 + \beta \gamma + \gamma^2$$
, $\gamma^2 + \gamma \alpha + \alpha^2$, $\alpha^2 + \alpha \beta + \beta^2$

- 9. सिद्ध कीजिए बूलीय बीजगणित $B\left(+,\cdot,\cdot\right)$ में किन्हीं दो अवयवों a तथा b के लिए
 - (i) $(a+b)' = a' \cdot b'$ तथा (ii) $(a \cdot b)' = a' + b'$

Prove that in a Boolean algebra $B(+,\cdot,\cdot)$, for any two elements a and b

(i) $(a+b)' = a' \cdot b'$ and (ii) $(a \cdot b)' = a' \cdot b'$

अथव

Or

निम्नांकित आरेख के तुल्य सुरुष परिपथ का निर्माण कीजिए और सत्यमान तालिकाओं से तुल्य परिपथों का सत्यापन भी कीजिए।

Draw a simple circuit for the following diagram and verify equivalen circuits by truth table.

[5] 21088

10. व्यंजक $\tan^{-1}(\cos\theta+i\sin\theta)$ के वास्तविक एवं अधिकल्पित भागों को अलग कीजिए। Separate into its real and imaginary parts the quantity $\tan^{-1}(\cos\theta+i\sin\theta)$.

अथवा

Or

x की आरोही घातों की श्रेणी में $e^{ax}\sin bx$ का प्रसार कीजिए।

Expand $e^{ax} \sin bx$ in a series of ascending powers of x.

1,350] [6] 21088